LOW MACH NUMBER MODELING OF TYPE Ia SUPERNOVAE. II. ENERGY EVOLUTION
نویسندگان
چکیده
The convective period leading up to a Type Ia supernova (SN Ia) explosion is characterized by very low Mach number flows, requiring hydrodynamic methods well-suited to long-time integration. We continue the development of the lowMach number equation set for stellar-scale flows by incorporating the effects of heat release due to external sources. Low Mach number hydrodynamics equations with a time-dependent background state are derived, and a numerical method based on the approximate projection formalism is presented. We demonstrate through validation with a fully compressible hydrodynamics code that this low Mach number model accurately captures the expansion of the stellar atmosphere as well as the local dynamics due to external heat sources. This algorithm provides the basis for an efficient simulation tool for studying the ignition of SNe Ia. Subject headingg s: convection — hydrodynamics — methods: numerical — nuclear reactions, nucleosynthesis, abundances — supernovae: general — white dwarfs
منابع مشابه
LOW MACH NUMBER MODELING OF TYPE Ia SUPERNOVAE. I. HYDRODYNAMICS
We introduce a low Mach number equation set for the large-scale numerical simulation of carbon-oxygen white dwarfs experiencing a thermonuclear deflagration. Since most of the interesting physics in a Type Ia supernova transpires at Mach numbers from 0.01 to 0.1, such an approach enables both a considerable increase in accuracy and a savings in computer time compared with frequently used compre...
متن کاملv 1 2 9 Se p 20 05 Low Mach Number Modeling of Type Ia Supernovae
We introduce a low Mach number equation set for the large-scale numerical simulation of carbon-oxygen white dwarfs experiencing a thermonuclear defla-gration. Since most of the interesting physics in a Type Ia supernova transpires at Mach numbers from 0.01 to 0.1, such an approach enables both a considerable increase in accuracy and savings in computer time compared with frequently used compres...
متن کاملThe Physics of Flames in Type Ia Supernovae
We extend a low Mach number hydrodynamics method developed for terrestrial combustion, to the study of thermonuclear flames in Type Ia supernovae. We discuss the differences between 2-D and 3-D Rayleigh-Taylor unstable flame simulations, and give detailed diagnostics on the turbulence, showing that the kinetic energy power spectrum obeys Bolgiano-Obukhov statistics in 2-D, but Kolmogorov statis...
متن کاملStar formation feedback and metal enrichment by SN Ia and SN II in dwarf spheroidal galaxies: the case of Draco
We present 3D hydrodynamical simulations aimed to study the dynamical and chemical evolution of the interstellar medium in dwarf spheroidal galaxies. This evolution is driven by the explosions of Type II and Type Ia supernovae, whose different contribution is explicity taken into account in our models. We compare our results with detailed observations of the Draco galaxy. We assume star formati...
متن کاملAMR for low Mach number reacting flow
We present a summary of recent progress on the development and application of adaptive mesh refinement algorithms for low Mach number reacting flows. Our approach uses a form of the low Mach number equations based on a general equation of state that discretely conserves both mass and energy. The discretization methodology is based on a robust projection formulation that accommodates large densi...
متن کامل